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Abstract 
This paper discusses parallel distributed computing in high performance 
computing (HPC) and artificial intelligence (AI) clusters. It focuses on the network 
portion of a cluster. The paper lists the challenges that parallel computing places 
on the network. Network infrastructure plays a critical role in overall high-
performance computing  as well as AI cluster performance and system scalability.  

Xsight Labs introduces the X1 family of fully programmable switching ASIC devices, 
optimized for AI and HPC cluster interconnect. It delivers best-in-class 25.6 Tbps 
full-duplex throughput, (with a robust 12.8 Tbps variation supported), ultra-low 
power, low latency, and revolutionary traffic management. It incorporates highly 
sophisticated mechanisms to reduce flow completion time (FCT) and avoid parallel 
slowdown. Xsight’s Intelligent Queueing (X-IQTM) and Application Optimized 
Switching enable distributed parallel computing systems to scale. 
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High Performance 
Computing 
High performance computing (HPC) evolved over 
multiple stages, beginning from very expensive, very 
large, and powerful supercomputers based on 
powerful processors. To overcome the limits of a 
single processor’s capabilities, multiple monolithic 
processors interconnected by purposely designed 
interfaces were introduced into supercomputers, 
followed by multi-core interconnected processors. 
Economics and technological progress enabled the 
usage of commodity processors and components to 
create a supercomputer. The evolution of networking 
and storage technologies, economics, and 
exponential growth in compute and storage needs 
has created a need for scalability that 
supercomputers cannot address. Distributed 
computing lead to widely deployed distributed 
compute and storage models. Typically, the compute 
chassis’ (each containing a number of commute 
nodes) and distributed storage coupled with remote 
direct memory access (RDMA) are connected over an 
Ethernet network to build compute clusters that are 
capable of simultaneously processing huge amounts 
of data over a large number of compute nodes. 

Distributed compute infrastructure alone is not 
enough to address HPC needs. Compute nodes must 
work on a task and access storage in parallel. 
Parallelism in HPC clusters is enabled by compute 
nodes communicating over a message passing 
interface (MPI) and accessing distributed storage 
over the Ethernet using RDMA or RoCE (RDMA over 

converged Ethernet). For these reasons, the network 
is a critical resource in parallel distributed 
computing. 

 

 

The Rise of Artificial 
Intelligence 
The world has stepped into a data driven era where 
data has become ubiquitous. Data creation, 
processing, and sharing is easier than ever. Enormous 
amounts of data are being created and stored in 
modern data centers. Data is extremely valuable for 
making decisions as well as for advancing business 
and technology. However, data sets still need to be 
processed and prepared for use. Moreover, the 
exploding amount of data makes its processing and 

Distributed Computing System 
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analysis by human or traditionally focused programs 
an impossible task. Artificial intelligence (AI) can be 
used to solve this problem. AI techniques allow 
systems to learn, plan, reason, and solve problems 
based on a given data set without being specifically 
programmed to perform well-defined tasks. Since its 
inception in the 1950’s by Minsky and McCarthy, AI 
evolved from being an esoteric academic exercise to 
being vastly deployed everywhere. AI concepts and 
services are extensively applied on many aspects of 
data-driven life. For example, medical decisions, 
business logic, targeted ad content language 
processing, and autonomous vehicles are just part of 
a long list of AI use cases. 

AI Components 
Recent dramatic technological breakthroughs have 
made AI a reality and have allowed AI to become a 
major part of modern data center compute and 
storage algorithms. 

Mathematical and statistical algorithms that have 
evolved over last two centuries are being used to 
enable AI for things such as linear regression, logistic 
regression, LDA, support vector machines, KNN, 
learning vector quantization, and more. 

Compute nodes and data storage have been able to 
grow tremendously due to powerful AI-oriented 
accelerators, such as Intel/Habana’s Gaudi, enabling 
large matrix computation, ultra-fast IOs and built-in 
storage and network virtualization.  

Compute and storage nodes deliver exponential 
growth in their respective performance and capacity. 
Efficient and accurate AI requires huge amounts of 

specific computations (think: matrix math) within a 
small timeframe. Traditional CPU architectures were 
not oriented to perform such computations. 
Distributed services and storage models applied via 
AI intrinsically address these issues. 

 

 

Distributed AI Computing 
Data sets for AI models are extremely large, for 
example, MRI scans are many Terabytes large, and 
learning processes may use tens or hundreds of 
thousands of images. AI models used to process such 
data sets require amounts of compute that cannot be 
achieved by a single AI accelerator or by a single AI 
accelerator chassis. The solution is distributed 
compute and storage using distributed parallel 
compute HPC principals applied on AI as well. AI 
compute often runs on HPC infrastructure. 

AI Components 
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AI Training Stages 
AI model training is a multi-stage and iterative 
process. First, the data must be collected. The data 
needs to be as diverse as possible, unbiased and 
abundant in order to ensure model accuracy. The 
next step is to prepare and clean the data set. This 
stage usually includes data reformatting, cleaning 
and normalization based on a model’s input 
requirements.  

The primary stage is training. Prepared data is 
modeled to learn until it reaches a pre-defined 
accuracy. Next, the model is evaluated using test data 
sets that differ from training data. If evaluation 
results produce expected model accuracy, the 
model’s hyperparameters are tuned and the training 
and evaluation process is repeated. The goal at this 
stage is to improve model performance. Once 
performance and accuracy are satisfactory, the 
model is deployed for inference, in other words, 
testing the model with real-world data. Models are 
constantly trained in order to achieve higher 
accuracy and to absorb new data.  

Parallelism 
There are two main types of computing parallelism: 
Data Parallelism and Task Parallelism (aka Model 
Parallelism for AI). In the Data Parallel approach, data 
is broken down into non-overlapping batches. Each 
data batch is fed into a compute node. All compute 
nodes are loaded with identical models (AI) or tasks 
(HPC).  

Let’s take an AI model training as an example. 
Parallelism is often applied on AI algorithms using 
stochastic gradient descent. The algorithm’s goal 
here is to estimate parameters based on a specified 
data set.  

Each node computes parameters based on its local 
data set. Output parameters from all compute nodes 
are synchronized to define model-wide parameters 
set. This iterative process of parameters update 
continues until the desired model accuracy is 
achieved. The main advantage of using the Data 
Parallelism method is that separating data into 
batches is relatively simple and it works for any AI 
cluster/model architecture. However, 

AI Stage-by-Stage 
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synchronization creates a bottleneck when a large 
number of parameters are used.  

In the Model Parallel approach, the AI model is split 
between compute nodes. The model is broken into 
layers. Each model layer is further broken down and 
loaded into a set of parallel compute nodes, thus 
creating a number of AI model layers, each consisting 
of a set of compute nodes. Nodes that are loaded with 
input AI model layers are fed with full data sets. Once 
all nodes within same layer finish their compute 
iteration and are synchronized, their output is passed 
on to next AI model layer that is represented by a set 
of computation nodes.  

The Model Parallelism works well with a large 
number of parameters. It significantly reduces 

memory footprint in AI accelerators. However, 
splitting the model, in particular within a given layer, 
is not trivial and may affect model behavior and 
accuracy. Worker compute nodes communicate 
between themselves, and require synchronization to 
complete. Communication and synchronization 
delays may, however, affect overall training speed. 

There are additional approaches to parallelism that 
combine data and model parallelism: pipeline and 
hybrid parallelism.  

Network Challenges 
in AI and HPC 
Clusters 
Networks play a critical role in any distributed 
compute and storage architecture. Network 
infrastructure bandwidth, latency, congestion 
management, reliability, as well as many other 
factors greatly affect distributed system 
performance. A malfunctioning network can create a 
cascading effect causing prolonged severe 
performance degradations. Distributed AI and HPC 
systems will amplify network infrastructure criticality 
by their iterative, heavy, frequent, and synchronous 
communication. A number of acute network 
infrastructure attributes must be defined, that are 
essential for the enhanced performance of 
distributed AI and HPC computing performance. 

Data Parallelism 

Model Parallelism 
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Network Latency 
Breakthroughs in both compute (AI accelerators and 
CPUs) and storage technologies pushed the limits of 
network infrastructure. Storage Seek time and 
Sustained Throughput parameters show significant 
evolution as follows: Seek time dove from 2-5 ms for 
HDD, through 0.2 ms for SSD, all the way to 0.02 ms 
for NVMe. Sustained throughput grew from 200 MBps 
for HDD to 3 GBps for NVMe storage technologies[1]. 

At the same time, compute, with rise of specialized AI 
accelerators, delivers extremely low latency and 
throughput capabilities.  

The network’s portion in overall distributed compute 
system latency is small (about 10%) for HDD storage 
and traditional CPUs. Migration to AI distributed 
computing with ultra-fast distributed storage and 

specialized AI accelerators or HPC pods make 
network latency a major system-wide latency factor. 
The network must evolve and deliver fast, lower 
latency infrastructure. Network latency can be 
broken down to 2 types: static and dynamic latency.  

STATIC LATENCY 

Static latency is latency associated with switch 
forwarding latency and optical/electrical 
transmission latency. This latency is derived from 
switch ability and transmission distance. Switch 
latency in a distributed parallel computing system 
should be as small as possible to enable  fast  
communication and compute progress. Static 
latency is, however, only a part of network latency. 

DYNAMIC LATENCY 

Dynamic latency is associated with queuing delay, 
flow completion time, tail latency, packet drop, burst 

AI Computing Technology Performance Improvement – Taken from [2] 
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and microbursts. Dynamic latency is the main 
contributor to overall network latency and a key 
factor for distributed computing.  

AI and HPC systems rely on parallelism and 
concurrency. Parallelism for those services requires 
frequent spikes in data transferred for 
synchronization and parameter exchange. Any delay 
in this process causes extremely valuable compute 
resources to stall and thus degrades overall system 
performance greatly. Network packet loss is 
responsible for the largest network latency spikes 
since it requires TCP retransmission which stalls 
compute resources and places a huge load on the 
CPUs managing the system. Furthermore, remote 
storage access using TCP based protocol, iWARP, is 
not scalable for large systems due to its large number 
of connections. Therefore, large distributed systems 
rely on UDP based RoCEv2 (RDMA over Converged 
Ethernet). While UDP is scalable and doesn’t carry 
TCP management overhead, it doesn’t provide built-
in reliability and therefore requires a lossless 
network. Lossless switching for RoCEv2 is 
implemented by Priority Flow Control (PFC) and 
Explicit Congestion Notification (ECN). 

Incast and Bursts 
AI and HPC distributed systems put pressure on 
network infrastructure by creating frequent incast 
(many to one) traffic patterns causing congestion 
that incurs significant latency spikes. Incast may lead 
switch queues to fill up and trigger a PFC response 
which in its turn slows down the network and causes 
other system performance degradation events. The 
highly concurrent nature of AI and HPC systems along 

with their need for synchronization are the main 
factors contributing to incast traffic. AI data’s parallel 
computing has a built-in incast problem as 
parameters from different data batches must be 
propagated into the parameter servers, almost 
concurrently, for each compute iteration 

AI model parallelism and HPC cluster parallel 
compute rely on large numbers of messages  
communicating between the compute nodes. Sub-
jobs running on different compute nodes 
communicate with each other in order to complete 
the task. Similarly, compute nodes that represent an 
AI model layer (in AI model parallelism) use 
communications in order to achieve task completion. 
Large numbers of compute nodes communicate 
concurrently in distributed systems. Therefore, 
micro-bursts that fill network node queues are 
created, and this leads to increased queueing time 
and thereby increases communication latency.  

Incast in AI Data Parallel Computing 
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Flow Completion Time (FCT) and 
Tail Latency 
While bursts cause queueing delays and increase 
dynamic latency, they also lead to an increase in Flow 
Completion Time (FCT) causing some flows to lag 
behind others. AI model parallel computing requires 
synchronization within the AI model layer 
represented by a set of AI processors. 
Synchronization is a frequent, repetitive, and 
concurrent event often occurring during parallel HPC 
computing as some jobs are dependent on result of 
others. Therefore, the increased FCT creates a system 
wide phenomena known as tail latency. Tail latency 
is the latency of the fraction of the flows that take the 
longest to complete. Tail latency is critical to 
distributed parallel computing since it has a 
cascading effect and degrades the performance of 
the entire system. HPC parallel compute stalls while 
jobs dependent on output from other jobs idle, or 
when AI training stalls and doesn’t progress to the 
next layer until all nodes are synchronized. Network 
infrastructure must mitigate FCT increase in order to 
decrease tail latency.  

PFC and Head of Line (HoL) Blocking  
RoCEv2 requires a lossless network. PFC is the 
traditional hop-to-hop protocol that allows one 
network node (a receiver) to pause its peer (a 
transmitter) once a certain threshold is reached on 
the receiver’s queues. It pauses a single priority and 
not the entire interface. However, there are a number 
of problems in this mechanism that are amplified in 
parallel computing systems such as HPC and AI.  

In a multi-tier network PFC has a built-in Head of Line 
Blocking (HoL) problem. PFC supports only eight 
priorities, and in many switches deployed today, only 
up to four are practically supported due to buffer 
management, size, and architecture limitations. The 
granularity of eight priorities is far from ideal. Many 

flows are mapped to a single PFC priority because 
there are a small number of queues compared to the 
number of flows. HoL blocking may also occur when 
congestion created by parallel computing bursts, has 
a flow destined to a non-congested path is blocked by 
another flow scheduled first and is destined to a 
congested path. This phenomenon is more severe in 
AI and HPC clusters due to their burstiness and large 
number of flows. In particular, in multi-tenant 
deployments this problem affects business 
operations since one tenant’s traffic flow may cause 

   PFC HoL Blocking Scenario 
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delays in the traffic flow of the other tenants due to 
an insufficient amount of queues.  

In high scale deployments, PFC may cause the 
network to stall because of PFC deadlock [3].  

Parallel Slowdown 
The highly concurrent nature of AI and HPC compute, 
PFC’s lack of granularity, HoL blocking, and possible 
deadlocks can all lead to a significant FCT increase for 
some flows, and therefore increase tail latency. This 
increase in tail latency in distributed parallel 
computing systems decreases overall system 
performance since compute resources are stalled 
due to delayed communications from earlier 
compute stages. This may lead to a phenomenon 
known as “parallel slowdown”,  a condition where the 
addition of compute nodes doesn’t increase or in 
some cases even decreases total compute 
completion time due to communication overhead.  

Network Diameter and Radix 
Parallel compute can be used  to solve very 
complicated tasks in a more reasonable amount of 
time by simply adding more compute nodes to 
increase compute performance. However, in a 
distributed system, the network is a bottleneck.  

The ability to add more compute nodes depends on 
the switch radix and the overall network diameter. 
Using traditional, small radix switches limits number 
of compute nodes that can be connected to a single 
switch, thus driving a requirement to add more and 
more switches only in order to add compute nodes. 
In turn, more switches lead to more complicated 

networks with more network hops that each flow 
must travel through, thus increasing the network 
diameter. An increase in the network diameter can 
cause an upsurge in both static and dynamic latency 
and FCT, altogether leading to a parallel slowdown 
phenomenon. 

Network Infrastructure Challenges 
Summary 
Distributed parallel computing, such as HPC and AI, 
are extremely compute and storage hungry systems. 
While parallelism unleashes the enormous potential 
of these applications, it at the same time, places 
tremendous stress on network operation. Network 
infrastructure must evolve beyond traditional 
architecture in order to address HPC and AI clusters 
needs. Switches must focus on decreasing FCT, 
managing their smart buffers (increasing the 
on-switch buffer doesn’t singly mitigate the problem 
as it leads to an increase in queue time), large radix 
and throughput. 

 

X1 Empowers AI and 
HPC Clusters 
X1 is a family of fully programmable switching ASIC 
devices, optimized for AI and HPC cluster 
interconnect. It delivers best in class 25.6 Tbps (with 
a 12.8 Tbps variation also supported) full-duplex 
throughput, at ultra-low power and low latency with 
revolutionary traffic management mechanisms to 
reduce FCT and avoid parallel slowdown, as well as 
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Application Optimized Switching to empower 
evolution in compute and storage and to enable 
scalable distributed parallel computing systems. 

 

100G LR SerDes 
The X1 family of devices incorporates industry 
leading 100G LR PAM4 SerDes, enabling the design of 
in-rack DAC connectivity for the 100G ecosystem 
without the need for retimers while future-proofed 
for 800G optics. It enables in-rack passive copper 
attach and minimizes optical connectivity. 

The X1 100G PAM4 and 50G NRZ LR SerDes enables 
interoperability and seamless integration into 

existing infrastructure with support for 400G and 
800G modules. It supports flexible port 
configurations using 100, 200, and 400 GbE speeds for 
port densities such as 256 x 100 GbE, 128 x 200 GbE or 

64 x 100 GbE.  

The devices deliver future-proofed systems by 
enabling the design of high scale systems with 
existing infrastructure that are ready to transition to 
800G connectivity without the need to upgrade the 
network infrastructure. 

Ultra-Low Power 
The X1 monolithic die 25.6 Tbps design delivers a 
comprehensive feature set and large memories. The 

X1 Architecture Highlights 
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combination of revolutionary architecture, 
monolithic die, and Application Optimized Switching 
delivers ultra-low power for typical parallel 
computing and data  center use cases.  

At less than 300W for 25.6T and under 200W for 12.8T 
(for typical parallel computing and data center use 
cases) X1 is the industry’s lowest power data center 
switch silicon. X1 enables twice the improvement in 
performance per Watt in a 1 RU form factor compared 
to currently available solutions. 

High Radix 
High radix switching is an important factor for 
distributed parallel computing systems. High radix 
allows connecting a number of server racks to a 
single switch, thus enabling the system to scale. High 
radix also reduces the number of network nodes  
required to interconnect massive scale clusters, 
offering a  flatter and reduced diameter networks. A 
flatter network reduces FCT and tail latency 
significantly, thereby effectively boosting overall 
system performance. As a result, smaller diameter 
networks mitigate parallel slowdown and as such, 
boost the compute power of distributed parallel 
computing systems. 

X1’s best-in-class radix of 256 ports allows creating 
massively scaled systems that contain tens of 
thousands of compute nodes. For example, X1’s high 
radix allows connecting a maximum of 32,768 hosts 
in 2 network layers, and a massive 4,194,304 hosts in 
3 layers.  

X-IQTM 
As described above, PFC’s native lack of granularity, 
HoL Blocking, and possible deadlock significantly 
increase FCT in AI and HPC clusters all leading to an 
increase in tail latency and degraded system 
performance. This type of bottleneck leads to parallel 
slowdown in AI and HPC clusters. 

X1 X-IQTM introduces 64K on-chip queues and fine-
grained channelized flow control protocol with XFCTM. 
This unprecedented granularity of congestion 
control along with its comprehensive set of traffic 
management mechanisms significantly reduces 
queueing time, minimizes HoL blocking and 
fate-sharing in multi-tenant deployments.  

Application Optimized Switching 
X1 Application Optimized Switching enables ultra-
low power (for typical AI and HPC interconnect use 
cases) along with low latency and fully optimized 
packet processing. 

X-PNDTM: ELASTIC RESOURCES 

Switches must be able to absorb and handle traffic 
loads and bursts gracefully. Packet memory and 
traffic management in HPC and AI network is critical.  

There are two main memory components in any 
switch architecture: packet memory and control 
table memory. Some architectures dedicate separate 
memories for packet storage and controlled tables. 
The latter is further portioned into a set of control 
tables, each (or most of which) has its own dedicated 
memory. Such inflexible memory architecture poses 
two problems. First, the inability to increase packet 
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memory size at the expense of unused control tables, 
reducing the network’s ability to sustain larger loads 
and bursts. Second, the lack of memory flexibility 
within control table blocks (inability to grow 
deployment critical tables at the expense of unused 
or under-utilized ones) decreases the network’s 
ability to fully address deployment requirements and 
creates islands of unused critical memory resources. 
Certain switch architectures allow flexibility within 
the control table blocks. This approach addresses 
only the second problem, yet does not address the 
main problem. 

X1’s X-PNDTM introduces complete and 
uncompromised resource elasticity. X1’s fully shared 
and elastic memory can be partitioned without 
limitations. This approach enables a single 
architecture to tailor resource allocation to HPC 
and/or AI application needs and to avoid under-
utilization. 

Allocating resources to a packet buffer alone is not 
sufficient for the HPC and AI cluster environment. 
Thus, X-PNDTM alongside smart buffer management, 
X-IQTM, and XFCTM deliver an optimized solution that 
enables parallel computing clusters to scale. 

FULL PROGRAMMABILITY 

Traditional, “hardcoded” pipeline packet processing 
switch architecture was created to address a 
feature-heavy enterprise environment at relatively 
small scales. Legacy architectures carry the same 
architecture, “a little bit of everything”, approach into 
a cloud world. AI and HPC clusters need “lean and 
mean” networks that are fully utilized without legacy 
architectures and the overhead of unused memories 

and logic that carryover power, latency and cost 
penalties.  

Some architectures took steps forward by 
introducing configurable pipeline stages and flexible 
memories. This approach mitigates an overhead of 
unused control memories and some logic, however, 
it still carries the penalty of power, latency, and 
packet memory inflexibility. 

X1 architecture delivers tangible network 
programmability and introduces uncompromised 
programmability across its processing logic, 
memories, and queue management. Full 
programmability of the X1 device delivers Application 
Optimized Packet Processing without overheads that 
lead to tangible power and latency advantages. 

X-VIEWTM: Traffic Analytics and 
Telemetry 

The network is a critical component in parallel 
compute clusters. It requires application optimized 
network nodes and application optimized traffic 
management subsystem configurations. In order to 
troubleshoot and optimize cluster performance, 
network analytics data and telemetry support is vital. 
X1’s XVIEWTM delivers a comprehensive analytics and 
telemetry suite. It incorporates in-band telemetry, 
any-cause verbose mirroring, black hole detection 
and localization, real-time statistics histograms and 
microburst detection. 
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X-MONTM: On-Chip Health Analytics 
Data explosion drives massive growth of AI and HPC 
services. In its turn, it drives demand for enormous 
chip quantities, switches in particular, in order to 
address infrastructure needs. Networking devices 
with 25.6 Tbps throughput, comprehensive feature 
sets, and large memories (such as X1) are large and 
complicated. Quantities along with enormous scale 
of such devices makes quality and reliability more 
important than ever. Network reliability is critical as 
it directly affects parallel computing system 
operation. Chip vendors invest in comprehensive 
silicon level test coverage, screening processes, and 
quality and reliability monitoring processes, yet, test 
escapes and latent defects are a reality. Such issues 
often manifest themselves as in-field failures. 
Defective Parts Per Million (DPPM) is never 0 for chips 
at this scale. Prediction ability and root cause 
analysis of such in-field failures is practically non-
existent today.  

X1’s X-MONTM, powered by proteanTecs is a novel 
approach to this problem. It delivers in-field 
reliability assurance by providing readable data that 
enables predictive maintenance, alerts before failure, 
and extends system lifetime. In addition, X1’s UCTTM 
dramatically reduces latent defects in deployment, 
significant improvement in DPPM, increases in-field 
reliability, and reduces network down time. 

 

The X1 System 
The X1 product family is comprised of 3 different 
device variations, all of which share the same 
software and feature set and are full interoperable. 

 

 

 

Device 
Part 
Number 

Maximum 
Throughput 

Network 
Facing SerDes    
(Gbps) 

Port 
Configuration 
Examples   (GbE) 

XLX1A256A 25.6 Tbps 256 x 100 
• 256 x 25/50/100 
• 128 x 200 
•   64 x 400 

XLX1A128A 12.8 Tbps 128 x 100 
• 128 x 25/50 
•   64 x 200 
•   32 x 400 

XLX1A256B 12.8 Tbps 256 x 50 
• 256 x 25/50 
• 128 x 100 
•   64 x 200 
•   32 x 400 

 

  

X1 Family of Devices 
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X1 Hardware 
The X1 family of devices is optimized for 
interconnecting AI, ML, storage and compute clusters 
within a data center’s ecosystem. It enables building 
compact 1RU switches with large port densities of up 
to thirty-two 800G QSFP-DD/OSFP. The X1 based 1 RU 
system is built and backed by a leading ODM. A 1RU 
production-ready, cost effective system is available 
in multiple configurations: 12.8 Tbps (32 x 400G), 
12.8 Tbps (16 x 800G), and 25.6 Tbps (32 x 800G) 
dual-face plate configurations — 32xOSFP or 
32xQSFP-DD — enabling smooth infrastructure 
integration. The 1RU system’s retimer–less design 
delivers improved power efficiency.  

X1 Software 
The Xsight Software Development Kit (X-SDK) 
delivers a comprehensive feature set. The multi-
layered SDK design enables multiple integration 
models with different NOS types. The same X-SDK 
and feature set are consistent across the entire X1 
family of devices. X1 software embraces open 
networking with SAI and SONiC integration. 

Summary 
The X1 family of devices are best-in-class ultra-low 
power switches providing throughputs of up to 
25.6 Tbps. The X1s are powered by flexible 100G LR 
SerDes, unconditionally shared buffers, HPC and AI 
Application Optimized Switching, X-IQTM, 
comprehensive traffic management sub-system, 
X-PNDTM, X-VIEWTM, and X-MONTM technologies. They 
deliver an extremely low power and low latency 
solution for AI and HPC cluster processing and 
programming, by addressing and minimizing current 
network infrastructure problems.  
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